Tuesday, November 15, 2016

Impulsantwort Gleitender Filter Matlab

Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, Die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi / 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen sind nur um einen Faktor von etwa 1/10 (für den 16-Punkt-Bewegungsdurchschnitt) oder 1/3 (für die Vierpunkt-gleitender Durchschnitt) gedämpft. Wir können viel besser als das. Der oben genannte Plot wurde durch den folgenden Matlab-Code erzeugt: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-Iomega)) H8 (1/8 ) (1-exp (-iomega)) - (1-exp (-iomega)) - Geispiel (Omega , Abs (H4) abs (H8) abs (H16) Achse (0, pi, 0, 1) Copyright-Kopie 2000- - Universität von Kalifornien, BerkeleyFIR-Filter, IIR-Filter und die lineare konstante Koeffizientendifferenzgleichung Causal Moving Average (FIR) Filter Weve diskutierte Systeme, in denen jede Abtastung der Ausgabe eine gewichtete Summe der (gewissen) der Abtastwerte des Eingangs ist. Nehmen wir ein kausal gewichtetes Summensystem, wobei Kausal bedeutet, dass ein gegebenes Ausgangssample nur von dem aktuellen Eingangssample und anderen Eingängen früher in der Sequenz abhängt. Weder lineare Systeme überhaupt noch endliche Impulsantwortsysteme müssen kausal sein. Jedoch ist Kausalität bequem für eine Art Analyse, die bald erforschen würde. Wenn wir die Eingaben als Werte eines Vektors x symbolisieren. Und die Ausgaben als entsprechende Werte eines Vektors y. Dann kann ein solches System beschrieben werden, bei dem die b-Werte ein Gewicht sind, das auf die aktuellen und früheren Eingangsabtastwerte angewendet wird, um die aktuelle Ausgangsabtastung zu erhalten. Wir können uns den Ausdruck als Gleichung vorstellen, wobei das Gleichheitszeichen gleich ist oder als Verfahrensanweisung mit dem Gleichheitszeichen Bedeutung Zuordnung. Schreiben wir den Ausdruck für jeden Ausgangsprobe als MATLAB-Schleife von Zuweisungsanweisungen, wobei x ein N-Längenvektor von Eingangsabtastwerten ist und b ein M-Längenvektor von Gewichten ist. Um mit dem Spezialfall am Anfang umzugehen, werden wir x in einen längeren Vektor xhat einbetten, dessen erste M-1 Abtastwerte Null sind. Wir werden die gewichtete Summe für jedes y (n) als inneres Produkt schreiben und einige Manipulationen der Eingänge (wie Reversieren b) zu diesem Zweck durchführen. Diese Art von System wird oft als ein gleitender Durchschnitt Filter, aus offensichtlichen Gründen. Aus unseren früheren Diskussionen sollte klar sein, dass ein solches System linear und verschiebungsinvariant ist. Natürlich wäre es viel schneller, die MATLAB-Convolution-Funktion conv () anstelle unseres mafilt () zu verwenden. Anstatt die ersten M-1 Abtastwerte des Eingangs null zu betrachten, könnten wir sie als die letzten M-1 Abtastwerte betrachten. Dies ist die gleiche wie die Behandlung der Eingabe als periodisch. Nun verwenden Sie cmafilt () als den Namen der Funktion, eine kleine Änderung der früheren mafilt () - Funktion. Bei der Bestimmung der Impulsantwort eines Systems gibt es gewöhnlich keinen Unterschied zwischen diesen beiden, da alle nicht initialen Abtastungen der Eingabe Null sind: Da ein System dieser Art linear und schichtinvariant ist, wissen wir, dass seine Wirkung auf irgendwelche Sinusoid wird nur zu skalieren und verschieben. Hier ist es wichtig, dass wir die kreisförmige Version verwenden. Die kreisförmig gefaltete Version wird verschoben und skaliert, während die Version mit gewöhnlicher Faltung zu Beginn verzerrt ist. Lets sehen, was die exakte Skalierung und Verschiebung ist mit einem fft: Beide Eingang und Ausgang haben Amplitude nur bei Frequenzen 1 und -1, wie es sein sollte, da der Eingang war ein Sinus und das System war linear. Die Ausgangswerte sind um ein Verhältnis von 10,6251 / 8 1,3281 größer. Das ist der Gewinn des Systems. Was ist mit der Phase Wir müssen nur schauen, wo die Amplitude ungleich Null ist: Der Eingang hat eine Phase von pi / 2, wie wir wollten. Die Ausgangsphase wird um eine zusätzliche 1,0594 (mit umgekehrtem Vorzeichen für die negative Frequenz) oder etwa 1/6 eines Zyklus nach rechts verschoben, wie wir im Diagramm sehen können. Nun können wir eine Sinuskurve mit der gleichen Frequenz (1) ausprobieren, aber statt der Amplitude 1 und der Phase pi / 2 versuchen wir die Amplitude 1.5 und die Phase 0. Wir wissen, dass nur Frequenz 1 und -1 Amplitude ungleich Null haben (15.9377 / 12.0000) ist 1.3281 - und für die Phase ist es wieder um 1.0594 verschoben. Wenn diese Beispiele typisch sind, können wir die Wirkung unseres Systems vorhersagen (Impulsantwort .1 .2 .3 .4 .5) auf jedem Sinus mit der Frequenz 1 - wird die Amplitude um den Faktor 1,3281 erhöht und die (positive Frequenz) Phase um 1,0594 verschoben. Wir können die Wirkung dieses Systems auf Sinusoide anderer Frequenzen mit denselben Methoden berechnen. Aber es gibt einen viel einfacheren Weg, und eine, die den allgemeinen Punkt. Da die (zirkuläre) Faltung im Zeitbereich eine Multiplikation im Frequenzbereich bedeutet, folgt daraus, daß mit anderen Worten die DFT der Impulsantwort das Verhältnis der DFT des Ausgangs zu der DFT des Eingangs ist. In dieser Beziehung sind die DFT-Koeffizienten komplexe Zahlen. Wegen der abs (c1 / c2) abs (c1) / abs (c2) für alle komplexen Zahlen c1, c2 gibt diese Gleichung an, dass das Amplitudenspektrum der Impulsantwort immer das Verhältnis des Amplitudenspektrums der Ausgabe zu diesem ist Des Eingangs. Im Falle des Phasenspektrums ist der Winkel (c1 / c2) - Winkel (c1) - Winkel (c2) für alle c1, c2 (mit der Maßgabe, dass sich um n2pi unterschiedliche Phasen unterscheiden). Daher wird das Phasenspektrum der Impulsantwort immer die Differenz zwischen den Phasenspektren des Ausgangs und dem Eingang sein (mit welchen Korrekturen um 2pi benötigt werden, um das Ergebnis zwischen - pi und pi zu halten). Wir können die Phaseneffekte deutlicher sehen, wenn wir die Darstellung der Phase entpacken, d. H. Wenn wir verschiedene Vielfache von 2pi hinzufügen, um die Sprünge zu minimieren, die durch die periodische Natur der Funktion angle () erzeugt werden. Obwohl die Amplitude und die Phase üblicherweise für grafische und sogar tabellarische Darstellungen verwendet werden, sind die komplexen Fourier-Koeffizienten algebraisch nützlicher, da sie eine intuitive Möglichkeit sind, über die Auswirkungen eines Systems auf die verschiedenen Frequenzkomponenten seiner Eingabe nachzudenken Der einfache Ausdruck der Beziehung Der allgemeine Ansatz, den wir soeben gesehen haben, wird mit beliebigen Filtern des skizzierten Typs arbeiten, wobei jeder Ausgangssample eine gewichtete Summe eines Satzes von Eingangsabtastwerten ist. Wie bereits erwähnt, werden diese oft als Finite-Impulse-Response-Filter bezeichnet, da die Impulsantwort von Finite-Size - oder manchmal Moving-Average-Filtern ist. Wir können die Frequenzantwortcharakteristiken eines solchen Filters aus der FFT seiner Impulsantwort bestimmen, und wir können auch neue Filter mit gewünschten Eigenschaften durch IFFT aus einer Spezifikation des Frequenzgangs entwerfen. Autoregressive (IIR) - Filter Es wäre wenig Sinn, mit Namen für FIR-Filter, es sei denn, es gab eine andere Art von ihnen zu unterscheiden, und so diejenigen, die Pragmatik studiert haben, werden nicht überrascht sein zu erfahren, dass es tatsächlich eine andere große Art Des linearen zeitinvarianten Filters. Diese Filter werden manchmal rekursiv genannt, weil der Wert der vorherigen Ausgaben (sowie vorhergehende Eingaben) von Bedeutung ist, obwohl die Algorithmen im Allgemeinen unter Verwendung von iterativen Konstrukten geschrieben werden. Sie werden auch als Infinite Impulse Response (IIR) - Filter bezeichnet, weil im Allgemeinen ihre Reaktion auf einen Impuls für immer weitergeht. Sie werden auch manchmal als autoregressive Filter bezeichnet, da man die Koeffizienten als das Ergebnis einer linearen Regression verstehen kann, um Signalwerte als Funktion früherer Signalwerte auszudrücken. Die Beziehung von FIR - und IIR-Filtern ist klar in einer linearen konstanten Koeffizienten-Differenzengleichung zu sehen, d. h. eine gewichtete Summe von Ausgaben gleich einer gewichteten Summe von Eingängen zu setzen. Dies ist wie die Gleichung, die wir früher für das kausale FIR-Filter angegeben haben, außer dass wir neben der gewichteten Summe von Eingängen auch eine gewichtete Summe von Ausgängen haben. Wenn wir dies als eine Prozedur zur Erzeugung von Ausgangsabtastwerten denken wollen, müssen wir die Gleichung neu anordnen, um einen Ausdruck für den gegenwärtigen Ausgangsabtastwert y (n) zu erhalten, wobei die Konvention angenommen wird, dass a (1) 1 (z Und bs) können wir den 1 / a (1) Term loswerden: y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Wenn alle anderen a (n) als a (1) Null sind, reduziert dies auf unseren alten Freund das kausale FIR-Filter. Dies ist der allgemeine Fall eines (kausalen) LTI-Filters und wird durch den MATLAB-Funktionsfilter implementiert. Es sei der Fall betrachtet, bei dem die b Koeffizienten außer b (1) null sind (anstelle des FIR-Falles, bei dem a (n) null ist): In diesem Fall wird die aktuelle Ausgabeprobe y (n) als a berechnet Gewichtete Kombination der aktuellen Eingangsabtastung x (n) und der vorhergehenden Ausgangsabtastwerte y (n - 1), y (n - 2) usw. Um eine Vorstellung davon zu erhalten, was mit solchen Filtern geschieht, Das heißt, der Stromausgangsabtastwert ist die Summe der aktuellen Eingangsabtastung und der Hälfte der vorhergehenden Ausgangsabtastung. Nun nehmen einen Eingangsimpuls durch ein paar Zeitschritte, eine zu einer Zeit. Es sollte an diesem Punkt klar sein, daß wir leicht einen Ausdruck für den n-ten Ausgabe-Abtastwert schreiben können: er ist nur (Wenn MATLAB von 0 gezählt wird, wäre dies einfach 0,5 n). Da das, was wir berechnen, die Impulsantwort des Systems ist, haben wir durch Beispiel gezeigt, daß die Impulsantwort tatsächlich unendlich viele Proben ungleich Null haben kann. Um diesen trivialen Filter erster Ordnung in MATLAB zu implementieren, könnten wir Filter verwenden. Der Aufruf sieht folgendermaßen aus: und das Ergebnis ist: Ist dieses Geschäft wirklich noch linear? Wir können dies empirisch betrachten: Für einen allgemeineren Ansatz betrachten wir den Wert eines Ausgabebeispiels y (n). Durch sukzessives Ersetzen können wir dies so schreiben: Dies ist genau wie unser alter Freund die Faltungssummenform eines FIR-Filters mit der Impulsantwort, die durch den Ausdruck .5k geliefert wird. Und die Länge der Impulsantwort ist unendlich. Es gelten also die gleichen Argumente, die wir zeigen, dass FIR-Filter linear waren. Bisher scheint dies viel Aufhebens um nicht viel zu sein. Was ist diese ganze Untersuchung gut für gut beantworten diese Frage in Stufen, beginnend mit einem Beispiel. Es ist nicht eine große Überraschung, dass wir berechnen können eine Stichprobe Exponential durch rekursive Multiplikation. Betrachten wir einen rekursiven Filter, der etwas weniger offensichtlich macht. Dieses Mal machen wir es zu einem Filter zweiter Ordnung, so daß der Aufruf zum Filter die Form Lets hat, die den zweiten Ausgangskoeffizienten a2 auf -2cos (2pi / 40) und den dritten Ausgangskoeffizienten a3 auf 1 setzen und anschauen Die Impulsantwort. Nicht sehr nützlich als Filter tatsächlich, aber es erzeugt eine abgetastete Sinuswelle (aus einem Impuls) mit drei Multiplikations-Additionen pro Probe Um zu verstehen, wie und warum es das tut und wie rekursive Filter entworfen und analysiert werden können in Der allgemeinere Fall, müssen wir Schritt zurück und werfen Sie einen Blick auf einige andere Eigenschaften von komplexen Zahlen, auf dem Weg zum Verständnis der z transform. Moving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende mittlere Filter nicht ein Band von Frequenzen von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, ist der gleitende Durchschnitt ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SeitenleisteDer Wissenschaftler und Ingenieure Leitfaden für Digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Wie der Name andeutet, arbeitet das gleitende Mittelfilter durch Mittelung einer Anzahl von Punkten von dem Eingangssignal, um jeden Punkt im Ausgangssignal zu erzeugen. In Gleichung ist dies geschrieben: Wo ist das Eingangssignal, ist das Ausgangssignal und M ist die Anzahl der Punkte im Mittelwert. Beispielsweise ist bei einem 5-Punkt-Gleitmittelfilter Punkt 80 im Ausgangssignal gegeben durch: Alternativ kann die Gruppe von Punkten aus dem Eingangssignal symmetrisch um den Ausgangspunkt gewählt werden: Dies entspricht der Änderung der Summation in Gl . 15-1 von: j 0 bis M -1, bis: j - (M -1) / 2 bis (M -1) / 2. Zum Beispiel wird in einem 10-Punkt-gleitenden Durchschnittsfilter der Index j. Kann von 0 bis 11 (einseitige Mittelung) oder -5 bis 5 (symmetrische Mittelung) laufen. Symmetrische Mittelung erfordert, dass M eine ungerade Zahl ist. Die Programmierung ist etwas einfacher mit den Punkten auf nur einer Seite, jedoch ergibt sich eine relative Verschiebung zwischen den Eingangs - und Ausgangssignalen. Sie sollten erkennen, dass das gleitende Durchschnittsfilter eine Faltung mit einem sehr einfachen Filterkern ist. Zum Beispiel hat ein 5-Punkt-Filter den Filterkern: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Das heißt, das gleitende Mittelfilter ist eine Faltung Des Eingangssignals mit einem Rechteckimpuls mit einer Fläche von Eins. Tabelle 15-1 zeigt ein Programm zum Implementieren des gleitenden Durchschnittsfilters. FIR-Filtergrundlagen 1.1 Was sind die FIR-Filterquot-FIR-Filter sind einer von zwei Primärtypen von digitalen Filtern, die in digitalen Signalverarbeitungsanwendungen (DSP) verwendet werden, wobei der andere Typ IIR ist. 1.2 Was quotFIRquot quotFIRquot bedeutet bedeutet quotFinite Impulse Responsequot. Wenn Sie einen Impuls, das heißt, ein einziges quadratisches Beispiel, gefolgt von vielen quot0quot Proben, setzen, werden Nullen herauskommen, nachdem das quot1quot Beispiel seinen Weg durch die Verzögerungslinie des Filters gemacht hat. 1.3 Warum ist die Impulsantwort quotfinitequot Im allgemeinen Fall ist die Impulsantwort endlich, da es keine Rückmeldung in der FIR gibt. Ein Mangel an Feedback garantiert, dass die Impulsantwort endlich ist. Daher ist der Begriff "endliche Impulsantwort" annähernd gleichbedeutend mit einer Quotno-Rückmeldung. Wenn jedoch die Rückkopplung verwendet wird, ist die Impulsantwort endlich, der Filter ist jedoch immer noch ein FIR. Ein Beispiel ist das gleitende Mittelfilter, bei dem jedes Mal, wenn eine neue Probe eintritt, subtrahiert (rückgekoppelt) wird. Dieser Filter hat eine endliche Impulsantwort, obwohl er Rückkopplung verwendet: nach N Abtastungen eines Impulses die Ausgabe Wird immer Null sein. 1.4 Wie kann ich aussprechen firquot Einige Leute sagen, die Buchstaben F-I-R anderen Menschen auszusprechen, als wäre es eine Art von Baum. Wir bevorzugen den Baum. (Der Unterschied besteht darin, ob man von einem F-I-R-Filter oder einem FIR-Filter spricht.) 1.5 Was ist die Alternative zu FIR-Filtern DSP-Filter können auch "Infinite Impulse Responsequot (IIR)" sein. (Siehe dspGurus IIR FAQ.) IIR-Filter verwenden Feedback, so dass bei der Eingabe eines Impulses die Ausgabe theoretisch unendlich klingelt. 1.6 Wie FIR-Filter mit IIR-Filtern vergleichen Jedes hat Vor - und Nachteile. Insgesamt aber überwiegen die Vorteile von FIR-Filtern die Nachteile, so dass sie viel mehr als IIRs verwendet werden. 1.6.1 Was sind die Vorteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu den IIR-Filtern bieten FIR-Filter folgende Vorteile: Sie lassen sich leicht als quasi-lineare Phasequot (und in der Regel) realisieren. Einfach ausgedrückt, verzögern lineare Phasenfilter das Eingangssignal, aber donrsquot verzerrt seine Phase. Sie sind einfach zu implementieren. Bei den meisten DSP-Mikroprozessoren kann die FIR-Berechnung durch Schleifen einer einzigen Anweisung durchgeführt werden. Sie eignen sich für Mehrpreisanwendungen. Mit Multi-Rate bedeuten wir entweder einen Dekrementquot (Reduzierung der Abtastrate), eine Interpolation (Erhöhung der Abtastrate) oder beides. Ob Dezimierung oder Interpolation, die Verwendung von FIR-Filtern erlaubt es, einige der Berechnungen wegzulassen, wodurch eine wichtige Recheneffizienz geschaffen wird. Im Gegensatz dazu, wenn IIR-Filter verwendet werden, muss jeder Ausgang individuell berechnet werden, auch wenn dieser Ausgang verworfen wird (so dass die Rückkopplung wird in den Filter integriert werden). Sie haben gewünschte numerische Eigenschaften. In der Praxis müssen alle DSP-Filter mit Hilfe einer Finite-Precision-Arithmetik, dh einer begrenzten Anzahl von Bits, implementiert werden. Die Verwendung von Finite-Precision-Arithmetik in IIR-Filtern kann aufgrund des Feedbacks erhebliche Probleme verursachen, aber FIR-Filter ohne Rückkopplung können gewöhnlich mit weniger Bits implementiert werden, und der Konstrukteur hat weniger praktische Probleme, die mit der nicht idealen Arithmetik zusammenhängen. Sie können mit Hilfe von fractional arithmetic implementiert werden. Im Gegensatz zu IIR-Filtern ist es immer möglich, ein FIR-Filter unter Verwendung von Koeffizienten mit einer Grße von weniger als 1,0 einzusetzen. (Die Gesamtverstärkung des FIR-Filters kann bei Bedarf an seinem Ausgang eingestellt werden.) Dies ist ein wichtiger Aspekt bei der Verwendung von Festpunkt-DSPs, da sie die Implementierung viel einfacher macht. 1.6.2 Was sind die Nachteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern haben FIR-Filter manchmal den Nachteil, dass sie mehr Speicher und / oder Berechnung benötigen, um eine gegebene Filtercharakteristik zu erreichen. Auch sind bestimmte Reaktionen mit FIR-Filtern nicht praktikabel. 1.7 Welche Begriffe werden bei der Beschreibung von FIR-Filtern verwendet? Impulsantwort - Der Impulsantwortfaktor eines FIR-Filters ist eigentlich nur der Satz von FIR-Koeffizienten. (Wenn Sie ein quotimplusequot in einen FIR-Filter setzen, der aus einem quotierten Quot-Sample besteht, gefolgt von vielen quot0quot-Samples, ist das Ausgangssignal des Filters die Menge der Koeffizienten, wenn sich die 1 Sample nacheinander um jeden Koeffizienten bewegt, um die Ausgabe zu bilden. Tippen - Ein FIR quottapquot ist einfach ein Koeffizient / Verzögerungspaar. Die Anzahl der FIR-Anzapfungen (oft als "Anfasser" bezeichnet) ist ein Hinweis auf 1) die zur Implementierung des Filters erforderliche Speicherkapazität, 2) die Anzahl der erforderlichen Berechnungen und 3) die Menge des Filterfilters, Multiply-Accumulate (MAC) - In einem FIR-Kontext ist ein MACquot der Vorgang des Multiplizierens eines Koeffizienten mit dem entsprechenden verzögerten Datenabtastwert und dem Akkumulieren des Ergebnisses. FIRs erfordern normalerweise einen MAC pro Hahn. Die meisten DSP-Mikroprozessoren implementieren die MAC-Operation in einem einzigen Befehlszyklus. Transition Band - Das Frequenzband zwischen Passband - und Stopband-Kanten. Je schmaler das Übergangsband ist, desto mehr Taps werden benötigt, um den Filter zu implementieren. (Ein quotsmallquot-Übergangsband führt zu einem quotsharpquot-Filter.) Delay Line - Der Satz von Speicherelementen, die die quotZ-1quot-Verzögerungselemente der FIR-Berechnung implementieren. Zirkulärer Puffer - Ein spezieller Puffer, der zirkulär ist, weil eine Inkrementierung am Ende dazu führt, dass er an den Anfang wickelt, oder weil das Dekrementieren von Anfang an bewirkt, dass es bis zum Ende umwickelt. Zirkuläre Puffer werden oft von DSP-Mikroprozessoren bereitgestellt, um den Quotientenquot der Proben durch die FIR-Verzögerungsleitung zu implementieren, ohne die Daten im Speicher wörtlich bewegen zu müssen. Wenn ein neues Sample zum Puffer hinzugefügt wird, ersetzt es automatisch die älteste.


No comments:

Post a Comment